Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity.

نویسندگان

  • Alexey Harauzov
  • Maria Spolidoro
  • Graziella DiCristo
  • Roberto De Pasquale
  • Laura Cancedda
  • Tommaso Pizzorusso
  • Alessandro Viegi
  • Nicoletta Berardi
  • Lamberto Maffei
چکیده

Experience-dependent plasticity in the cortex is often higher during short critical periods in postnatal development. The mechanisms limiting adult cortical plasticity are still unclear. Maturation of intracortical GABAergic inhibition is suggested to be crucial for the closure of the critical period for ocular dominance (OD) plasticity in the visual cortex. We find that reduction of GABAergic transmission in the adult rat visual cortex partially reactivates OD plasticity in response to monocular deprivation (MD). This is accompanied by an enhancement of activity-dependent potentiation of synaptic efficacy but not of activity-dependent depression. We also found a decrease in the expression of chondroitin sulfate proteoglycans in the visual cortex of MD animals with reduced inhibition, after the reactivation of OD plasticity. Thus, intracortical inhibition is a crucial limiting factor for the induction of experience-dependent plasticity in the adult visual cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABAergic Inhibition in Visual Cortical Plasticity

Experience is required for the shaping and refinement of developing neural circuits during well defined periods of early postnatal development called critical periods. Many studies in the visual cortex have shown that intracortical GABAergic circuitry plays a crucial role in defining the time course of the critical period for ocular dominance plasticity. With the end of the critical period, neu...

متن کامل

The antidepressant fluoxetine restores plasticity in the adult visual cortex.

We investigated whether fluoxetine, a widely prescribed medication for treatment of depression, restores neuronal plasticity in the adult visual system of the rat. We found that chronic administration of fluoxetine reinstates ocular dominance plasticity in adulthood and promotes the recovery of visual functions in adult amblyopic animals, as tested electrophysiologically and behaviorally. These...

متن کامل

Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke

In the primary visual cortex (V1), monocular deprivation (MD) induces a shift in the ocular dominance (OD) of binocular neurons towards the open eye (Wiesel and Hubel, 1963; Gordon and Stryker, 1996). In V1 of C57Bl/6J mice, this OD-plasticity is maximal in juveniles, declines in adults and is absent beyond postnatal day (PD) 110 (Lehmann and Löwel, 2008) if mice are raised in standard cages. S...

متن کامل

Nerve growth factor-induced ocular dominance plasticity in adult cat visual cortex.

Activity-dependent modifiability of cortical ocular dominance occurs only during early postnatal life, within the so-called "critical period," but not thereafter in adult visual cortex. To examine the role of neurotrophins in the activity- and age-dependent stimulation-induced modifiability of visual cortex, we tested whether intracortical infusion of nerve growth factor could induce ocular dom...

متن کامل

Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF.

Visual deprivation such as dark rearing (DR) prolongs the critical period for ocular dominance plasticity and retards the maturation of gamma-aminobutyric acid (GABA)ergic inhibition in visual cortex. The molecular signals that mediate the effects of DR on the development of visual cortex are not well defined. To test the role of brain-derived neurotrophic factor (BDNF), we examined the effects...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2010